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Abstract. Two theorems are proved. In the first properties of an important mapping from 
an orthocomplemented lattice to itself are studied. In the second we extend the character- 
isation theorem of Zierler to get a very useful theorem characterising orthomodular lattices. 
Since quantum logics are merely cr-complete orthomodular lattices, our principal result is, 
for application in quantum physics, a characterisation theorem for quantum logics. 

1. Introduction 

Formal quantum theories defined on both Hilbert spaces and C*-algebras have their 
foundations built on quantum logics (for a full discussion see Mukherjee 1977). 
Varadarajan (1968) and numerous other workers have studied quantum logics in 
considerable detail. In this paper we prove a characterisation theorem which sums up 
very neatly almost all the important properties of quantum logics. On our way to 
proving this theorem, we study the properties of an important mapping from an 
orthocomplemented lattice to itself. A number of related results are also proved in the 
form of lemmas and corollaries. 

2. Formalities 

We use the following definitions and notation: 

Definition 1. A lattice is a partially ordered set (a partially ordered set is hereafter called 
a poset for brevity), in which any two elements, say a and 6,  have both a least upper 
bound called the join of the two elements denoted by a v b and a greatest lower bound 
called the meet of the two elements and denoted by a A b. If S is a subset of a lattice, 
then the join and the meet of the subset if they exist are denoted by V S  and A S  
respectively. A lattice is said to be complete if every subset S of the lattice has both a 
join and a meet. A lattice is said to be u-complete if every countable subset of the lattice 
has both a join and a meet. 

Definition 2. A lattice L is said to have a universal upper bound (universal lower bound) 
if v L (  A L) exists in L, in which case it is denoted by I ( 0 ) :  

Definition 3. A lattice L with universal bounds I and 0 is called a complemented lattice 
if for each a E L ,  there exists an U ' E  L such that 

a v a ' = I  and a A a ' = O .  
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Definition 4. A complemented lattice is called orthocomplemented if the complementa- 
tion a * a ’  satisfies the following further requirements: 

(a’)‘ = a V a E L  

a c b 3 b ’ s a ’ .  
and 

Definition 5. An order-reversing bijection from a lattice to itself is called a dual 
automorphism of the lattice. 

Throughout this work we use the symbol 3 to denote ‘implies’. In particular PJ Q 

We expect the reader to be familiar with the following lemma (a proof can be found 
means that whenever P is true, so also is Q. 

in McLane and Birkhoff 1967). 

Lemma 2.1. Every lattice L has the following properties: 
Idempotent: 

a v a = a ;  a A a = a  V a E L  

Commutative: 

a v b  = b  v u ;  a Ab = b  h a  V a , b E L  

Associative: 

(a  v b )  v c  = a  v ( b  v c ) ;  (a  A b )  h c  = a  A(b ~ c )  Vu, b, c E L  

Absorption: 

a = a  v ( a  r \b)=a A(a v b )  

Consistency: 

a 6 b @ a  A b = a and a v b = b 

Isotone: 

V a , b E L  

V a , b E L  

b s c  + a  v b S a  v c and a h b  S a  A c Vu, 6, c E L  

Distributive inequalities: 

a h (b  v c ) a ( a n  b ) v  (a  h c )  
a v (b  r ,c )S (a  v b ) h ( a  v c )  

Modular inequality: 

a c c j a v ( b A c ) s ( a v b ) A c  

Vu, 6,  c E L  

Vu, 6, c EL.  

We can now define: 

Definition 6. A lattice L is said to be distributive if the distributive inequalities are strict 
equalities in it. 

Definition 7. A lattice L is said to be modular if the modular inequality is a strict 
equality in it. 
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Definition 8. A map $:L + L is called a join morphism on L if 

$(a v b )  = $ ( a )  v Vu, b E L .  

If in addition L has a universal lower bound and 

A$(L) = 0, 

$ is called a hemimorphism on L. 

Lemma 2.2. In an orthocomplemented lattice L the complementation ’ is a dual 
automorphism of L. 

Proof. Let a’ = 6‘. Then (a’)’= a = (b’)’ = b. Thus ’ is injective. 
Since a = (a’)’Va E L ,  ’ is surjective. 
Let a v b = c. Then a s c and b s c j a ’ a c ’  and b ’ 2  c’ 3 c ’ s  a’ A b‘, that is, (a v b)’S 
a’ A b ’ .  
Let a’ Ab’= d. Then d S a ’  andd s b ’ j a  G d ’  and b s d ’ j ( a  v b )  S d ’ j d  = a ‘  A b’S 
(a v b)‘. 
Hence (a  v b)’ = a’ A b’. 
Similarly (a  A 6)’ = a’ v 6‘ .  
This completes the proof. 

Corollary 2.2.1. Let L be an orthocomplemented lattice. Let S be a subset of L. Then 
(i) vS exists implies AS’ exists (where S‘ = {XI: x E S }  and 

( V s ) ‘  = A s ’ .  

(ii) AS exists implies vS’ exists and 

( A s ) ’ =  Vs’. 

Proof. Suppose vSexistsand vS=c .  This impliesxsc V X E S ~ C ’ S X ’ V X E S ~ C ’ ~  

Let d be a lower bound for S’ .  Then d S x ’ V x ’  6 S ‘ 3 x  s d’ Vx E S j c  = vS s d ’ j d  s 
C I .  

Thus c’ is a lower bound for S’ which is greater than or equal to every lower bound for 
S’ .  Hence c ’  is the meet of S ’ .  Thus AS’ exists and 

A S ’ .  

A s ’  = ( V s ) ’ .  

The proof of (ii) is similar. We are finished. 

Corollary2.2.2. Let$:LI+LZbeadualisomorphism. L e t s  beasubsetofLl.  Then 
(i) the existence of either v S  or A $ @ )  implies the existence of both and 

(ii) the existence of either AS or v$(S) implies the existence of both and 
V s  = A $ ( s ) ;  

AS = V$(s). 

Proof. The proof is exactly similar to that of the preceding corollary. 
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3. The two theorems 

Throughout this section L denotes an orthocomplemented lattice. Let c EL.  The 
mapping L + L defined by x H (x v c’) A c plays a very important part in the theory of 
quantum logics and in particular their relationship to Baer *-semigroups (Folllis 
1960). In the first theorem we collect together the important properties of this mapping. 

Theorem 3.1. Let L be an orthocomplemented lattice. Let c.EL. Then &:L + L  
defined by c$~ (x) = (x v c’) A c has the following properties: 

6) 4 c ( 0 ) = 0 ,  
(ii) 0 4c = dC, 

(iii) x EL, = {x:x E L & O  S X , S  c } j x  s & ( x ) ,  

x ’  A (4c (x)) = 0 and x’ A c = (&(x))’ A c, 

(iv) a sufficient condition that +c is a hemimorphism on L is that 

x&LC+xx’AcE4, (L)and  

(v) a necessary condition that +c is a hemimorphism on L is that 

c = 4 c ~ ~ ~ ~ ~ ~ 4 c ~ ~ ~ ~ ’ ~ c ~ = 4 c ~ ~ ~ ~ 4 c ~ x ’ ~ .  

Proof. (i) &(0) = (0 v c ’ )  A c = C’ A c = 0. 

Then h s x  v c ’ j h  v c ’ G x  vc ’+(h v c ’ ) A c S ( x v c ’ ) A c = h .  
On the other hand 

(ii) Let x E L  and let h =&(x)  = (x v c’) A C .  

h s h  vc’and  h s c + h s ( h  V C ’ ) A C .  

Hence 4c 0 & (x) = & (x) Vx EL,  or in other words 

4 c  O 4 c  = 4 c .  
(iii) x EL, + x  s c  + x  G(x vc’) A C  = & ( x )  = h. 

X ’  A &(x) = X ’  A (X v c ’ )  A C  = (x’ A C )  A (X v c ’ )  = (x’ A C) A (x’ A C ) ’ =  0. 
h G x  v c ’ j h  v c ’ = ~ x v c ’ ,  b u t x s h + x v c ’ S h v c ’ .  
Hencex v c ’ = h  V C ’ ~ X ’ A A = ~ ’ A ~ = ( ~ ~ ( X ) ) ’ A C .  

Then if x & L,, there exists a z E L  such that 
(iv) Le tx&L,+x‘AcE&(L) .  

4c ( z )  = X ’  A c 3 ( ( x ’  A c )  v c’) A c = +c 0 C#J~ (2) = & ( z )  = X ’  A C. 

In view of (iii) above we have Vx EL,  

X ’  A C  = ((x’ A C )  v c ’ )  AC; 

Now let g = &(x)  v 4c (y )  = ((x v c’) A c )  v ((y v c ’ )  A c ) s  ( X  v y v c ’ )  A c = &(x v y). 
Hence ( X  V C’) A C c g  + g ’ s  (X’ A C) V C ’ j ( g ’  V C’) A C  S ((X’ A C) V C’) A C = X ’ A C .  

Similarly (g’ v c’) A c s y ’  A c. 

Hence 4 c b  vy )=4c (x )v4c (y ) .  

Hence (g’ V C’) A C S X ‘  A y ’  A C +(g A C) V C 

( X V y V C ’ ) A C 3 g = g A C 2 ( X V y  V C ‘ ) A C .  

(v) Let & be a hemimorphism. Then 

4 c ( X  V X ’ ) = ( X  VX’VC’)AC= 

2 X  V y V C ’ + ( ( g  A C )  VC’)  A C  = g  A C  5 

V C’) A C = C = +c (X) V & (X’). 
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Let + , ( x ) = h ,  then +,(h vh’ )=c  =+,(h)v4,(h’)=+, o ~ ~ ( x ) v ( ‘ ( ~ ’ v c ’ ) A c ) .  
But 4, 04,(x) =+,(x) = h, and h s c  j c ’ s h ’ j h ’ v c ’ =  h’. 
Hence c = h v (h’ A C) = 4, (x) v 4, (x’). 
This completes the proof of our theorem. 

Remark 3.1.1. We shall soon see that in a quantum logic 

X E L, 3 X  = 4,(X) = (X V C’) A C 

and 

C=(c$”C’))’=((C’VX‘’)AX’)’=X V ( C  AX’). 

Now the preceding theorem tells us that in any orthocomplemented lattice 

X E L, X s 4, (X ), C = 4, (X ) V (X ’ A C ) 

and X ’  A &(x) = 0, provided 

x & L, j X ’  A c E 4, (L). 
If the orthocomplemented lattice has the property that 

a s b  and a ’ A b = O + a = b ,  

then we will have 4, ( x )  = x and c = x v ( x ’  A c), in other words, our orthocomplemented 
lattice, if u-complete, will become a quantum logic. Thus we have rediscovered a 
definitive property of quantum logics given by Zierler (1961). In doing so we had to 
assume that the orthocomplemented lattice satisfied the sufficient condition that 4E is a 
hemimorphism. It is easy to see that this condition implies that L, = &(L) and if this 
new condition is satisfied for every c EL, our orthocomplemented lattice, if u- 
complete, is a quantum logic. We thus have a new definitive property of a quantum 
logic. We collect together all the definitive properties of an orthomodular lattice in our 
next theorem. 

Theorem 3.2. An orthocomplemented lattice L is said to be orthomodular or weakly 
modular if it has anyone and, therefore, everyone of the following properties: 

(i) a, b E L  a n d a s b j a v ( a ’ A b ) = b .  
(ii) a, b EL and a ~ b 3 3 c  E L  such that c S a ‘  and a vc  = b. 

(iii) a, b EL, a S b and a’ Ab = 0 3 b = a. 
(iv) L, = 4, (L) Vc EL. 
(v) a, b, c E L, a s c and b s c ’  j (a  v b) A c = a. 

(vi) a, b, c E L, a s c  and a s b ’ j ( a  v b) ~c = a  v(b ~ c ) .  

Proof. We shall first prove the equivalence of the first five by proving (i) 3 (ii) j ( i i i ) j  
(iv)+(v)+(i). Then we shall prove that (iii) and (v)=$(vi)+(iv), thus completing the 
proof. 
Proof of (i) j (ii): Take c = a’ A b, clearly c s a’ and a v c = b. 
Proof of (ii) 3 (iii): From (ii) there exists a c 6 a’ such that a v c = b. 
Clearly c S b 3 c  Ab = c, but c Ab S a ’  hb  = OJc = 0 3 b = a v c = a  v 0 = a .  
Proof of (iii) 3 (iv): From Theorem 3.1 a E L, ;$a s 4, ( a )  and a’ A 4, ( a )  = 0. 
Hence from (iii) a = &(a)  j L, c 4,(L). 
But x E L  j + , ( x )  = ( x  v c’) A c S c  .$4,(L) c L,. 
Thus L, = &(L) Vc EL. 
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Proof of (iv) 3 (v): L, = & ( L )  j if a s c, then there is an element d E L  such that 
a = & ( d ) + $ c ( a )  = c$~ 0 & ( d )  = # ~ , ( d )  = a, that is 

U=(UVC’)AC.  

If in addition b G c’, then (a  v b )  A c 6 (a  v c ’ )  A c = a. On the other hand a G a v b and 
a ~ c ~ u ~ ( u v b ) ~ c .  T h u s ( a v b ) A c = a .  
Proof of (v) 3 (i): a S b j b’ 6 a’ and a S a” = a j (b’ v a )  A a ’ = b ’ j b = a v (a’ A b) .  
Proof of (iii) and (v ) j (v i ) :  Let a S c  and a S b‘. From modular inequality 

a v ( b ~ c ) s ( a v b ) ~ c .  

But 

(a v (b  A c)) ’  A (a  v b )  A c 

= a ’  A (b’v c’) A (a v b )  A c = (b’v c’) A ( (a  v b )  A a’)  A c 

= (b’ v c ’ )  A (b  A c )  = 0, 

where we have used (v) in deducing that (a  v b )  A a’ = b. 
Hence a v (b  A C )  = (a  v b )  A C. 
Proof of (vi)+ (iv): By taking b = c’  in (vi) we see that a 6 c and a 6 6‘ = c are the same 
condition and both are satisfied, hence 

(U V C ’ ) A C = U V ( C ’ A C ) = U V O = U .  

This finally completes the proof of our theorem. 

Remark 3.2.0. Theorem 3.2 being a characterisation theorem looks partly like a 
definition and indeed it’gives six equivalent definitions of an orthomodular lattice and 
proves the equivalence of the different definitions. 

Definition 9. A a-complete orthomodular lattice is called a quanhrm logic. 

Corollary 3.2.1. c which exists by virtue of theorem 3.2(ii) is unique. 

Proof. a v c = b and c S a’ j c  S a ’  A b, but c ’  A a’ A b = (a  v c) ’  A b = b’ A b = 0 3 c  = 
a‘ A b. Thus c is uniquely determined by the last equality and we are finished. 

Corollary 3.2.2. Let L be a weakly modular orthocomplemented lattice. Then 
L[a,  b ]  = {x : x E L&a 6 x s b }  is a weakly modular orthocomplemented lattice with 
universal bounds a and b in which the orthocomplementation X : x HX is defined by 
x = a v (x’ A b )  = ( a  v x‘) A b where ’ is the orthocomplementation in L. 

Proof. That a, b are universal bounds in L[a,  b ]  is clear from the definition of L[a,  b ] .  
Now x E L[a,  b ] j a  v (x’ ~ b )  = (a vx’) A b  because a G b  and a S (x’)’=x and theorem 
3.2(vi) applies. 

~ ~ ~ y = ( a ~ x ’ ) ~ b ~ y = ( a ~ x ‘ ) ~ y = a ~ ( x ’ ~ y )  bytheorem3,2(vi). 
Hencex v ( x X A y y ) = x  V a V ( x ’ h y ) = x  V ( x ’ h y ) = y  bytheorem3.2(i). 
Thus the corollary follows from theorem 3.2(i). 

We now prove that x, y E L [ u ,  b ] ,  x s y j y  = x  v ( x X  A Y ) .  
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Remark 3.2.3. Our theorem with corollaries proves with substantially greater ease the 
properties established in Varadarajan (1968, 9 1 of chap. 6) and much more. 

Remark 3.2.4. A somewhat weaker sufficient condition that 4, of theorem 3.1 is a 
hemimorphism is as follows: 

x E L ,  UL,.Jx A C ' E ~ , ( L )  and y, z ~ 4 , ( L ) + y  v z  E+,(L). 

The proof is very similar to that given in theorem 3.1. We note that an orthocomp- 
lemented lattice satisfying the sufficient condition of theorem 3.1 is weakly modular 
whereas one satisfying the condition given above may not be so. 
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